1	(a	(i)	(mass at t =0) – (mass at t = 5) NOTE: must have mass at t = 5 not final mass	[1]
		(ii)	fastest at origin slowing down between origin and flat section gradient = 0 where gradrient = 0	
			three of above in approximately the correct positions	[2]
		(iii)	3 correct comments about gradient = [2] 2 correct comments about gradient = [1] 1 correct comment about gradient = [0]	[2]
	(b)	stai san	rt at origin and smaller gradient ne final mass just approximate rather than exact	[1] [1]
	(c)		smaller surface area	[1]
			lower collision rate	[1]
		(ii)	molecules have more energy collide more frequently / more molecules have enough energy to react	[1] [1]
	(d)	nur con mai	nber of moles of HCl in 40 cm ³ of hydrochloric acid, acentration 2.0 mol / dm ³ = 0.04 × 2.0 = 0.08 ximum number of moles of CO ₂ formed = 0.04	[1] [1]
		ma	ss of one mole of $CO_2 = 44 g$	[1 [1
		ma	$x_1 + x_2 + x_2 + x_2 + x_3 + x_4 $	Ľ
				[Total: 15]

2	(a (i)	to neutralise all the acid / so all acid reacts not: reaction goes to completion	[1]
	(ii)	remove excess carbonate / removes unreacted carbonate not: remove solid	[1]
	(iii)	need water of crystallisation / hydrated crystals / to get crystals	[1]
	(iv)	filter / decant / wash crystals dry with filter paper or tissues etc. accept: in warm oven / warm place / in sun not: just heat	[1] [1]
	(b) (potassium carbonate is soluble / both salts soluble	[1]
	(ii)	use potassium carbonate solution	[1]
		accept: implication of solution – in pipette / burette / 25 cm ³ titrate / titration term required	[1]
		use an indicator accept : any named acid/base indicator repeat without indicator / use carbon to remove indicator	[1] [1]
	(c) ma ma the the the the the the the the the	[1] [1] [1 [1 [1]	
	no	ie: apply ection x must be an integer and less than 10	

3	(a	a transition element has more than one oxidation state or valency accept different oxidation states	[1]
	(b)	by removing oxygen concentration of O_2 decreases prevents the back reaction / equilibrium shifts to right	[1] [1]
	(c)	oxidation number reduced (from (+) 4 to 0) accept accepts electrons or accepts four electrons if number given must be 4	[1]
	(d)	low density / lightweight / light propellers / fittings on ships / inert anodes in electrolysis / hip replacements / ship building / chemical plants / cathodic protection / diving equipment	[1] [1]
	(e)	(i) percentage of oxygen = 31.6%	[1
		(ii) calculate the number of moles of atoms for each element	
		number of moles of Ti = 31.6/48 = 0.66	
		number of moles of O = 31.6/16 = 1.98 accept 2 both correct for one mark	[1]
		(iii) the simplest whole number ratio for moles of atoms:	
		Fe: Ti: O 1 1 3	[1]
		(iv) formula is FeTiO ₃ accept TiFeO ₃ must be whole numbers from (iii) or cancelled numbers from (iii) mark ecf throughout	[1]

- 4 (a filter / centrifuge / decant (partially) evaporate / heat / boil allow to crystallise / cool / let crystals form dry crystals / dry between filter paper / leave in a warm place to dry "dry" on its own must be a verb evaporate to dryness only marks 1 and 2 note if discuss residue only mark 1
 - (b) number of moles of HCl used = 0.04 × 2 = 0.08 number of moles CoCl₂ formed = 0.04 number of moles CoCl₂.6H₂O formed = 0.04 mass of one mole of CoCl₂.6H₂O = 238 g maximum yield of CoCl₂.6H₂O = 9.52g accept 9.5 g mark ecf to moles of HCl do **not** mark ecf to integers

to show that cobalt(II) carbonate is in excess

number of moles of HCl used = 0.08 must use value above **ecf** mass of one mole of CoCO₃ = 119g number of moles of CoCO₃ in 6.0g of cobalt(II) carbonate = 6.0/119 = 0.050 [1] reason why cobalt(II) carbonate is in excess 0.05 > 0.08/2 [1]

[Total: 10]

[1]

[1]

[1]

[1]

[4]